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ABSTRACT

The Warn-on-Forecast (WoF) program, driven by advanced data assimilation and ensemble design of

numerical weather prediction (NWP) systems, seeks to advance 0–3-h NWP to aid National Weather Service

warnings for thunderstorm-induced hazards. An early prototype of theWoF prediction system is theNational

Severe Storms Laboratory (NSSL) Experimental WoF System for ensembles (NEWSe), which comprises 36

ensemble members with varied initial conditions and parameterization suites. In the present study, real-time

3-h quantitative precipitation forecasts (QPFs) during spring 2016 from NEWSe members are compared

against those from two real-time deterministic systems: the operational High Resolution Rapid Refresh

(HRRR, version 1) and an upgraded, experimental configuration of theHRRR.All threemodel systemswere

run at 3-km horizontal grid spacing and differ in initialization, particularly in the radar data assimilation

methods. It is the impact of this difference that is evaluated herein using both traditional and scale-aware

verification schemes. NEWSe, evaluated deterministically for each member, shows marked improvement

over the two HRRR versions for 0–3-h QPFs, especially at higher thresholds and smaller spatial scales. This

improvement diminishes with forecast lead time. The experimental HRRRmodel, which became operational

as HRRR version 2 in August 2016, also provides added skill over HRRR version 1.

1. Introduction

The Warn-on-Forecast program (WoF; Stensrud et al.

2009) is addressing the challenge of creating numerical

weather prediction (NWP) models that can predict

specific thunderstorm-induced hazards such as large

hail, flood-producing rainfall, strong wind, and proxies

for tornadogenesis. The vision for implementing WoF

technologies in NWS operations calls for on-demand

activation of horizontal grid-spacing WoF ensemble

prediction systems (EPSs) of O(1) km, within a much

larger scale, for example, the continentalU.S. (CONUS)

convection-allowing model (CAM) EPS. These EPSs

would be frequently updated with observations,
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notionally with hourly updates on the outer CAM

domain and 15min or less on the embedded WoF

domain(s).

If successful, the WoF program will transform the

National Weather Service’s (NWS) ability to issue

warnings for these hazards, by advancing numerical

guidance capabilities to the point where they can

meaningfully influence decisions during short-fuse NWS

warning situations. While these advances will require

many more years of research—particularly in the areas

of data assimilation, social science, and ensemble

design—the program has already borne fruit. Since its

inception in 2009, over 70 papers have been published

that document WoF-funded results (e.g., Stensrud and

Gao 2010; Dowell et al. 2011; Potvin and Wicker 2012;

Jones et al. 2013; Wheatley et al. 2014; Yussouf et al.

2013, 2015, 2016; Gao et al. 2016; Potvin et al. 2017).

However, most WoF publications have focused on

technical aspects of specialized topics and, perhaps, have

neglected direct evidence of added value compared to

current operational NWP models.

The purpose of the present paper is to provide such

evidence, with a straightforward focus on the impact of

advanced storm-scale data assimilation techniques on

short-term thunderstorm precipitation forecasts. Our

approach is to compare 0–3-h precipitation forecasts

from a prototype WoF prediction system with those

from current-generation operational CAMs, specifically

the High Resolution Rapid Refresh (HRRR; Benjamin

et al. 2016) modeling system. Both the HRRR version

(hereafter HRRRv1) operational in spring 2016 and a

parallel, experimental next-generation version (HRRRv2)

were compared. We will demonstrate the added skill

that WoF-related advances in data assimilation bring to

short-term thunderstorm forecasts.

During the spring 2016 Hazardous Weather Testbed

(e.g., Karstens et al. 2015), the HRRR team at the

Global Systems Division (GSD) of the National Oce-

anic and Atmospheric Administration/Earth System

Research Laboratory (NOAA/ESRL) and the WoF

team at the NOAA/National Severe Storms Laboratory

(NSSL) demonstrated a jointly developed prototype

EPS comprising two components: an hourly updated

ensemble over a relatively large, fixed domain and a

nested, relocatable ensemble that was updated every

15min. All NWP systems considered in this study (i.e.,

fixed and nested domains of the prototype EPS and the

two versions of the deterministic HRRR) employed

similar versions of the WRF-ARW model (Skamarock

et al. 2008) with 3-km horizontal grid spacing. For

comparison with HRRR forecasts, we focus on the

nested component of the EPS updated every 15min,

hereafter denoted the 2016 prototype of the NSSL

Experimental WoF System for ensembles (NEWSe). A

primary difference between the 2016 prototype NEWSe

and HRRR is the data assimilation scheme, including

data type, volume, update frequency, and total time that

the 3-km grid is cycled. Thus, the specific purpose of this

paper is to examine how the advanced data assimilation

in the 2016 prototype WoF system affects deterministic

forecast skill. Presumably, additional skill could also

come from higher resolution and the ensemble fore-

casting approach, but assessment of these impacts is left

for future studies, probabilistic or otherwise. Section 2

begins by outlining the systems and verification methods.

Section 3 presents results from the impact of data as-

similation on 0–3-h precipitation forecasts, and this re-

search is summarized in section 4.

2. Data and methods

In addition to the following sections, a brief compar-

ison of the 2016 prototype NEWSe system with both

HRRR systems can be found in Table 1.

a. NEWSe system

The NEWSe system (Wheatley et al. 2015; Jones et al.

2016) assimilates Doppler radar and satellite observa-

tions using an ensemble Kalman (EnKF) filter ap-

proach. In this study, forecast integrations are

performed with the WRF-ARW model, version 3.6.1,

run at 3-km horizontal grid spacing to balance the

computational cost of resolution and ensemble size.

The relocatable domain used for this experiment com-

prised 249 3 249 grid points and was recentered daily

based on expected regions of hazardous weather. Ini-

tialization each day at 1800 UTC involved the in-

terpolation of initial and lateral boundary conditions

(ICs and LBCs, respectively) from the fixed EPS do-

main; 18 different pairs of ICs and LBCs were thence

created. NEWSe comprised 36 members, each with

a different permutation of ICs, LBCs, and diversity in the

planetary boundary layer [i.e., Yonsei University (YSU),

MYJ, and Mellor–Yamada–Nakanishi–Niino (MYNN)],

shortwave radiation [Dudhia and Rapid Radiative Trans-

fer Model for GCMs (RRTMG)] and longwave radiation

(RRTM and RRTMG) parameterization schemes (see

Wheatley et al. 2015). Only the first 18 members (covering

all IC–LBC pairs) are examined here. Assimilating ob-

servations every 15min, NEWSe was cycled for a total of

9h, from 1800 to 0300 UTC. Ensemble forecasts were

produced hourly beginning at 1900 UTC.

b. HRRR systems

The HRRR configurations examined here comprise

the operational HRRRv1, run by the National Centers
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for Environmental Prediction (NCEP) at the time of this

study, and an experimental HRRRv2 run by ESRL that

became operational at NCEP three months after the

time of this study. HRRRv1 forecasts were generated

hourly with WRF-ARW v3.4.1 running at 3-km hori-

zontal grid spacing, and LBCs were supplied by the

parent Rapid Refresh (RAP) model (Benjamin et al.

2016). HRRR ICs were produced as follows: 1) in-

terpolation ofmodel fields fromRAP toHRRRgrids, 2)

reflectivity data assimilation during a 1-h model in-

tegration, 3) three-dimensional variational data assimi-

lation (3D-Var) of conventional observations with the

NCEP Gridpoint Statistical Interpolation (GSI) pack-

age (Wu et al. 2002; Kleist et al. 2009), and 4) cloud and

hydrometeor adjustment based on satellite and radar-

reflectivity observations (Benjamin et al. 2016). The

reflectivity assimilation method in step 2 is a low-cost

latent-heating method (Weygandt et al. 2008), per-

formed without a digital filter, that specifies microphysics

temperature tendency during the 1-h initialization based

on the reflectivity field. HRRRv2 differed fromHRRRv1

by using version 3.6.1 of WRF-ARW, three-dimensional

hybrid ensemble–variational data assimilation (3D-EnVar)

of conventional observations, and refinements of the

WRF physical parameterizations.

c. Data assimilation methods

Previous studies have demonstrated the benefits of fre-

quently updated radar data assimilation for short-term

(0–6h) NWP, including improved skill of predicting low-

level mesocyclones and other severe-storm features (e.g.,

Yussouf et al. 2015) and increased lead times for flash

flooding (Yussouf et al. 2016). We therefore expect dif-

ferences in radar data assimilation methods between

NEWSe and HRRR to be substantial factors. The

TABLE 2. Cases from 2016 included in the present study. The

date refers to the day 1 initialization (convection typically con-

tinues into the next UTC day).

Date

Location

of interest

0–3-h forecast initialization

time (UTC)

7 May CO, WY 2000, 2100, 0300

8 May OK, KS 1900–2200, 0000, 0100, 0300

9 May OK 1900, 2100, 2200, 0100

10 May KY 1900, 2100, 0100, 0300

16 May TX Panhandle 1900–2200 0000–0300

17 May TX 1900, 2100, 2200, 0000–0300

22 May TX, OK, KS 1900, 2100, 0100, 0300

23 May TX Panhandle 1900, 2100, 0100, 0300

24 May KS 1900, 2100, 0300

25 May KS 1900, 2100, 0100, 0300

26 May KS 1900, 2100, 0100, 0300

27 May OK, KS 1900
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HRRR reflectivity assimilation occurs during 1 h, using

two low-cost approaches with substantial fine-tuning

and parameter adjustments for the latent heating and

cloud analysis. In contrast, NEWSe uses an advanced

but costlier EnKF technique that benefits from flow-

dependent, cross-covariance information for updating

unobserved analysis variables (Lorenc 2003). Further-

more, the EnKF assimilation in NEWSe occurs every

15min during cycling for as long as 9 h.

d. Verification data

Hourly Stage IV precipitation estimates (Lin 2011)

were obtained for each case. The Stage IV dataset is a

standard for QPF verification, provided at 4.7-km hori-

zontal grid spacing. Stage IV analyses are generated by

NCEP from multiple sensor sources and are manually

controlled for quality before distribution online.

e. Cases

Table 2 lists the 12 days in 2016 on which the NEWSe

was run. Overall, there are 106 forecast times, although

not all model forecasts were available for all times.

Herein, only forecasts with the first 3h common to all

three datasets are examined, yielding 53 initialization

times (i.e., 159 forecast times). For each case, all forecast

and verification data were reprojected onto the NEWSe

grid. Cases were chosen in real time if the Storm Pre-

diction Center outlook contained at least an enhanced

risk of severe weather. Stormmodes observed during the

cases spanned supercellular, MCSs, and upscale growth.

FIG. 1. FSS as a function of precipitation rate (line styles), model (color), and neighborhood size (increasing from the left to right

panels). Note the different y-axis limits between panels, as FSS asymptotes to unity as the neighborhood size approaches the size of the

domain. NEWSe (red lines) is the mean of the FSS values computed deterministically for each member. Higher FSS is better.
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f. Verification methods

1) TRADITIONAL SCORES

The skill of deterministic forecasts can be computed

according to a 2 3 2 contingency table based on the oc-

currence and detection of an event. Herein, we evaluate

each grid point in a given domain. From this contingency

table, we then formulate the scores described below.

The critical success index (CSI; Jolliffe and Stephenson

2003) is the ratio of correct forecasts of a given event

a to the total number of forecasts made (b represents

forecasted events not observed; c represents observed

events not forecasted). CSI represents the hit probability,

given that the event was forecast and/or observed. While

particularly suited to rare and extreme events, CSI is

sensitive to the frequency of a given event, and by nature

ignores events neither forecast nor observed d:

CSI5
a

a1 b1 c
. (1)

The probability of detection (POD; Jolliffe and

Stephenson 2003) is computed thus:

POD5
a

a1 c
. (2)

The success ratio (SR) is similar to the false alarm ratio

(FAR), calculated as in Roebber (2009):

SR5 12FAR5 12
b

a1 b
. (3)

FIG. 2. The differences in 1-h QPFs in MSE between (a) NEWSe and HRRRv2, where red

indicates that NEWSe is more skillful and blue indicates that HRRRv2 is more skillful, and

(b)HRRRv2 andHRRRv1, where red indicates that HRRRv2 ismore skillful and blue indicates

thatHRRRv1 ismore skillful. The x axis depicts increasing precipitation-rate threshold, and the y

axis shows increasing spatial scale (note both axes are plotted with a uniform scale). MSE was

calculated afterHaarwavelet decomposition for each of the threemodels (averaged over all cases

and times, and in the case of NEWSe, over all members). Lower MSE is better.
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Finally, the frequency bias (BIAS; Jolliffe and Stephenson

2003) is gauged as

BIAS5
a1 b

a1 c
. (4)

2) FRACTIONS SKILL SCORE

The fractions skill score (FSS; Roberts and Lean

2008) is generated by first converting forecast and

observed fields to binary arrays, based on the thresh-

old exceedance. Next, for each point, squares of in-

creasing size (neighborhoods) are considered and the

fraction of exceedance points in each neighborhood

is computed, yielding arrays of fractional coverage

centered at each grid point for each neighborhood

size. Herein, this is performed using a square uniform

filter, with the maximum square length (i.e., neigh-

borhood size) equal to the domain size. Where the

filter kernel lies outside of the domain, the fraction

field is neglected. For each neighborhood size, the

observed and forecast fraction fields are then differ-

enced in a form of mean square error (MSE). This

MSE is compared with a reference—essentially the

largest possible MSE—to yield the FSS.

3) SCALE-AWARE (CASATI) MSE

We employ a second scale-aware method to evalu-

ate the forecasts, based on a binary decomposition

method (Casati et al. 2004), herein referred to as

scale-aware MSE. First, forecast and observation

fields are converted into binary arrays (based on

threshold exceedance) then progressively decomposed

into wavelets with respect to increasing length scale

(Haar wavelet decomposition). The waves represent the

mean error and variation around the mean and are

combined to yield a scale-aware, threshold-dependent

MSE score.

3. Results

a. General results (QPFs)

We first present results from the verification of 1-h

quantitative precipitation forecasts (QPFs). FSS was

calculated over a range of thresholds and neighbor-

hood sizes for all NEWSe members (i.e., all members

are treated like deterministic forecasts) and both

HRRR configurations. We compare performance

through the mean FSS for each system (Figs. 1 and 2).

We see that NEWSe offers higher skill at all QPF

thresholds than both HRRRv1 and HRRRv2, though

this advantage diminishes with lead time. This advan-

tage for the NEWSe members likely stems from its

more frequent, longer cycling EnKF radar data as-

similation. According to the Student’s paired t test (not

shown), the advantage of NEWSe over both HRRR

models is statistically significant at the 95% confidence

level except at the largest thresholds (small sample

size) and neighborhood sizes (where the advantage

of NEWSe radar data assimilation is lost), and after

2 h of simulation time (same as for the largest

neighborhood sizes).

The differences in scale-aware MSEs between

NEWSe andHRRRv2, and the twoHRRRmodels, are

presented in Fig 2, showing the maximum error at the

FIG. 3. Performance diagram for (a) 1- and (b) 3-h forecast times for hourly QPFs from NEWSe (red), HRRRv2

(blue), and HRRRv1 (green). The symbols represent different QPF thresholds: 0.5mmh21 (circles), 4 mmh21

(diamonds), and 16mmh21 (squares). Dotted red lines show lines of constant BIAS; solid blue lines mark contours

of CSI; the x and y axes show increasing success ratio (12 FAR) and POD, respectively. A perfect forecast lies in

the top-right corner of the figure axes. The NEWSe points represent the mean of all members evaluated de-

terministically for a given lead time.
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smallest scales and thresholds. For a given threshold

and scale, the error is largest in HRRRv1, decreases in

HRRRv2, and is lowest in NEWSe. This result is con-

stant for all 3-hourly time periods (not shown); again,

the results are significant except at large scales and

thresholds and in the 2–3-h period (not shown).

In Fig. 3, we combine CSI with BIAS, POD, and SR

into a performance diagram (Roebber 2009) for all three

configurations at 1 and 3h, at three 1-h accumulated

QPF thresholds (0.5, 4, and 16mmh21). The NEWSe

members are again treated deterministically. At 1h

(Fig. 3a), while the NEWSe forecasts have considerably

higher CSI, POD, and SR values than both HRRR

systems, they also have relatively large negative biases.

HRRRv2 provides a more skillful forecast at the low

threshold (0.5mmh21) than HRRRv1 by all four mea-

sures. By 3 h (Fig. 3b), forecasts are less skillful than at

1 h, as expected by error-growth considerations and the

reduced impact of radar-data assimilation. At the low

threshold (0.5mmh21), NEWSe has better SR, but

worse POD, than the HRRR configurations. However,

at high thresholds, NEWSe forecasts still score better in

SR, POD, and CSI. NEWSe forecasts across all times

and thresholds underestimate precipitation coverage

(negative bias), while HRRR configurations are closer

to the optimal bias of unity.

b. Representative example

These objective results are corroborated by a represen-

tative case presented in Fig. 4, depicting 2-h lead-time

hourly QPFs valid at 0000 UTC 9 May 2016, from both

HRRR models and the closest NEWSe member to the

mean, along with corresponding Stage IV estimates.

The NEWSe member reasonably captures the series of

FIG. 4. One-hour precipitation valid at 0000 UTC 9 May 2016 of (a) Stage IV observations, (b) the NEWSe

member closest to the mean (member 7), (c) HRRRv1, and (d) HRRRv2. Forecasts in (b)–(d) are 2-h lead times

(i.e., initialized at 2200 UTC 8 May 2016). Rainfall is contoured according to the key; rates higher than 32mmh21

are colored white. States in (a) are labeled in red; some are referenced in the text.
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observed QPF maxima extending in a broken line from

northwesternKansas to southwesternOklahoma (Figs. 4a,b);

this is likely due to the assimilation of storms associated

with these maxima into NEWSe members at initializa-

tion. In contrast, a second precipitation maximum in

southeasternKansas is poorly represented in the NEWSe

member (Fig. 4b) because it only began to form

near the initialization time. Both HRRR models gen-

erate excessive precipitation in Oklahoma and too little

in Kansas.

4. Synthesis and conclusions

We have demonstrated an increase in short-term

QPF skill associated with advanced data assimilation

methods currently being tested in NEWSe, a WoF pro-

totype forecast system. The increase in skill is shown by

comparing QPFs from NEWSe members to two differ-

ent configurations of the HRRR model: HRRRv1, op-

erational at the time, and HRRRv2, experimental for

this study but later operational. The NEWSe prognostic

model is nearly identical to this now-operational version

of the HRRR, so the differences in skill between

NEWSe members and either HRRR configuration are

primarily a reflection of the advanced data assimilation

methods currently being developed and tested in the

2016 prototype WoF system. These methods are com-

putationally intensive and thus not practicable for cur-

rent implementation in the CONUS-scale HRRR

model, but may be viable for regional-scale domains

currently envisioned for early WoF implementations.

Positive differences in QPF skill between NEWSe

members and either of the HRRR configurations are

largest (i.e., most improvement) near the start of the

NEWSe 3-h forecast period and approach zero by its

end; differences are maximized for length scales less

than 100 km. The now-operational configuration of the

HRRR exhibits substantially better skill than the older

operational version over the same 3-h time period.

These results are encouraging for ongoing developments

in storm-scalemodeling and data assimilation. Specifically,

they indicate that HRRR developers are making mea-

surable progress with their WRF-ARW-based modeling

system and that the advanced data assimilation methods

envisioned for WoF implementations substantially en-

hance storm-scale predictive capabilities on 0–3-h time

scales. These development efforts benefit greatly from

close collaboration between NSSL (where the WoF proj-

ect is anchored) and ESRL/GSD (where HRRR devel-

opment and implementation is a priority). For example,

NSSL scientists consult with GSD collaborators to main-

tain near-operational configurations of the HRRR model

in the experimental NEWSe system, and GSD developers

entrain promising WoF-based data assimilation technolo-

gies into their complementary research, development, and

implementation efforts. The two groups are also collabo-

rating on the design of convection-allowing/resolving EPS

systems. The success of these systems depends heavily on

design strategies that are still the subject of considerable

debate in the meteorological community.
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